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Abstract

Kovtun, Son and Starinets proposed a bound on the shear viscosity of any fluid in terms

of its entropy density. We argue that this bound is always saturated for gauge theories

at large ’t Hooft coupling, which admit holographically dual supergravity description.
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1 Introduction

One of the remarkable connections arising from holography has been the link between

black hole thermodynamics and the more traditional case on the field theory side.

By working with a black hole (or black brane) background on the gravity side, this

allows the investigation of the corresponding gauge theory at finite temperature. Such a

connection alone has already yielded many new insights on the thermal phase structure

of gauge theories. On the other hand, it is important to realize that basic equilibrium

thermodynamic quantities, such as the free energy and entropy do not provide complete

information about the theory. In principle, with an exact AdS/CFT prescription, it

ought to be possible to provide dual descriptions of any desired process in the gauge

theory.

In practice, of course, we do not expect to find a simple description encompassing

all of the information of the gauge theory. However, in keeping with thermodynamic

ideas, it is natural to expect that the long-distance fluctuations in the theory will have a

hydrodynamic description. In this manner, one may expand the study of gauge theories

at finite temperature to encompass, e.g., transport phenomenon such as diffusion and

sound propagation [1,2,3,4,5]. Along these lines, Kovtun, Son and Starinets (KSS) [6]

extended the previous results of [1, 2, 3] and investigated the shear viscosity, η, for a

large variety of backgrounds.

In the examples of [6], which cover all maximally supersymmetric gauge theories

and N = 2∗ gauge theory (to leading order in m/T ) [7, 8], it was found that the ratio

of shear viscosity η to the entropy density s had a fixed value, η/s = 1/4π. On the

other hand, it can be shown that coupled systems have η/s ≫ 1, and even common

substances have ratios well about this value, which upon reintroducing fundamental

constants becomes
1

4π
→ ~

4πkB
≈ 6.08 × 10−13 K · s . (1.1)

Based on these observations, KSS conjectured that there is a universal bound in nature

for this ratio, namely [6]
η

s
≥ 1

4π
. (1.2)

It was further argued in [9] that this bound follows from the generalized covariant

entropy bound [10].

The intriguing result that η/s = 1/4π holds exactly for many different nonextremal

brane backgrounds suggests that saturation of the bound (1.2) may always be true for
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systems admitting a dual supergravity realization. In this letter, we demonstrate that

this is in fact always the case. Before doing this however, we provide a brief review

of the hydrodynamics of strongly coupled systems in section 2. Then in section 3 we

point out that the bound (1.2) is saturated for N = 2∗ gauge theory [7], Klebanov-

Tseytlin (KT) gauge theory [11], and Maldacena-Nunez (MN) gauge theory [12]. This

leads us, at the end of the section, to prove that the bound is always saturated in the

supergravity approximation of strongly coupled gauge theories.

Of course, as nature has demonstrated, the shear viscosity bound is not necessarily

saturated at weak coupling. This, however, is not in contradiction with our proof,

as one cannot directly compare strong and weak coupling results. This was already

been seen in a different context in e.g. the case of the entropy of N = 4 super-Yang-

Mills theory at weak and strong coupling. Nevertheless, the conjecture that there is

a minimum value of η/s still remains to be tested. In particular, in order to verify

the validity of (1.2) in the framework of gauge/string correspondence, one has to go

beyond the supergravity approximation and include α′ corrections (corresponding to

finite ’t Hooft coupling corrections). We consider some aspects of this issue in section 4.

2 Hydrodynamics and diffusion in supergravity duals

Just as in thermodynamics, hydrodynamics is not concerned with the microscopic

properties of a theory, but instead in its macroscopic ones. Overall, hydrodynamics

may be invoked to provide an effective description of long wavelength and long time

properties of a macroscopic medium. In this section, we briefly review a few key ideas

in the application of hydrodynamics to the study of strongly coupled gauge theories.

Of particular interest to hydrodynamics is the study of diffusion governing the

flow of say heat or charge through a medium. Assuming we have a charge related to a

conserved current, the diffusion of the charge is then governed by its local concentration,

so that ~j = −D~∇j0. Combining this with current conservation (also thought of as

the continuity equation), ∂tj
0 + ~∇ · ~j = 0, then yields the familiar heat equation,

∂tj
0 = ~∇ · (D~∇j0). As expected for a thermodynamic description, these equations are

no longer Lorentz invariant, and time reversal invariance is explicitly broken.

While this is all well known, its application to AdS/CFT is perhaps less famil-

iar. The important point here is that the diffusion coefficient D is connected to the

underlying properties of the gauge theory. At the same time, techniques have been
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developed to extract D from the fluctuations of long-wavelength modes in the super-

gravity dual [1,2,3,6]. So for strongly coupled gauge theories where the dual is known,

computation of D and other kinetic coefficients yields additional insight on the nature

of the theory itself.

Of more direct concern to us is bulk transport through a medium. In this case,

one works with energy, momentum and pressure, or in other words a conserved stress-

energy tensor with components T 00, T 0i and T ij. While the analysis is similar to that

of charge diffusion, some additional complication arises from the tensor nature of T µν .

The resulting hydrodynamic quantities of interest include the bulk viscosity ζ , shear

viscosity η, and the speed of sound vs.

In order to compute these kinetic coefficients from the gravity dual, one may in

principle extract the appropriate behavior of the boundary stress tensor T µν . Alter-

natively, as demonstrated in [6], the shear viscosity may be determined by setting up

a ‘shear perturbation’ as a fluctuation on top of the original supergravity background,

given by the metric

ds2 = (G00(u)dX
2

0 +Gxx(u)d~x
2) +Guu(u)du

2 + · · · , (2.1)

where the dual gauge theory has (X0, ~x ) coordinates, u is the transverse coordinate, and

the ellipses denote compact directions which are not of direct concern in the following.

This metric has a plane-symmetric horizon that extends in p infinite spatial directions,

~x = {xi}. We assume this metric has a horizon at u → u0 where G00 vanishes. The

decay of this shear mode is then governed by a diffusion coefficient

D =

√

−G(u0)
√

−G00(u0)Guu(u0)

∫

∞

u0

du
−G00Guu

Gxx

√
−G , (2.2)

denoted the shear mode diffusion constant in [6].

The shear viscosity, η, may be extracted from the diffusion constant D according

to [6]

D =
η

ǫ+ P
=

1

T

η

s
, (2.3)

in the dual gauge theory. Here ǫ, s, P and T are correspondingly the equilibrium energy

and entropy densities, the pressure and temperature. As a result, the conjectured shear

viscosity bound, (1.2), is equivalent to the statement

D ≥ 1

4πT
. (2.4)

This is the form of the bound that we use in the subsequent sections.
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3 Applications

In this section we compute the shear diffusion constant for a class of supergravity back-

grounds realizing supergravity duals to four dimensional gauge theories with eight or

less supercharges, namely the N = 2∗ Pilch-Warner (PW) solution [7], the supergrav-

ity dual to the Klebanov-Tseytlin cascading gauge theory (KT) [11], and the N = 1

Maldacena-Nunez solution [12]. In all cases we find that the KSS bound, (1.2), is sat-

urated. We then prove that it is always saturated in the supergravity approximation

to gauge theories at strong ’t Hooft coupling.

3.1 N = 2∗ gauge theory

The supergravity dual to N = 2∗ SU(N) gauge theory has been proposed in [7]. The

nonextremal deformation of the PW solution has been studied in [8]. This solution

realizes the supergravity dual to N = 4, SU(N) gauge theory softly broken to N = 2.

The high temperature thermodynamics of this system thus involves a small parameter

ξ ≡ m/T , where m is the mass of the N = 2 hypermultiplet, giving rise to N = 4 →
N = 2 partial supersymmetry breaking. That the KSS bound is saturated in this

system to leading order in ξ has been observed in [6]. Here, we show that it is actually

valid for arbitrary ξ. We will use an exact five-dimensional description of the black

hole, although since its 10-d lift is known [8], the same result can be obtained directly

in ten dimensions.

The relevant near-extremal 5-d Einstein frame metric involves two functions A, B

of a radial coordinate r

ds2
5 = e2A

(

e2BdX2
0 + d~x 2

)

+ dr2 . (3.1)

The horizon is taken to be at rhor = 0. One of the equations of motion is (Eq. (3.19)

of [8])

lnB′ + 4A+B = 4α + ln δ , (3.2)

where {α, δ} are constants specified by the near-horizon asymptotics of A, B (eq. (3.20)

of [8])

A→ α ,

eB → δ r .
(3.3)
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Notice that we can rewrite (3.2) as

(

e2B
)

′

= 2δe4α e−4A+B . (3.4)

Now we can use (2.2) to compute the shear diffusion constant

DPW =e3A
∣

∣

∣

∣

horizon

∫ +∞

0

dr e−4A+B

=e3A
∣

∣

∣

∣

horizon

∫ +∞

0

d
(

e2B
) 1

2
δ−1e−4α

=
1

2
δ−1 e−α .

(3.5)

Since the black hole temperature is [8]

T =
1

2π
δ eα , (3.6)

we conclude that

DPW =
1

4πT
, (3.7)

which generalizes the result of [6] to all orders in ξ.

3.2 KT gauge theory

The supergravity dual to N = 1 cascading SU(N + M) × SU(N) gauge theory has

been proposed in [11, 13]. The nonextremal deformations of the KT solution [11] has

been studied in [14, 15, 16]. In this section we follow [16].

The relevant near-extremal 10-d Einstein-frame metric involves four functions x, y,

z, w of a radial coordinate u

ds2

10E = e2z(e−6xdX2

0 + e2xd~x 2) + e−2zds2

6 ,

ds2

6 = e10ydu2 + e2y(dM5)
2 ,

(dM5)
2 = e−8we2ψ + e2w

(

e2θ1 + e2φ1
+ e2θ2 + e2φ2

)

,

eψ =
1

3
(dψ + cos θ1dφ1 + cos θ2dφ2) , eθi

=
1√
6
dθi , eφi

=
1√
6

sin θidφi .

(3.8)

Here X0 is the euclidean time and ~x are the three longitudinal D3-brane directions.

Also, with our choice of the radial coordinate, the horizon is at u = +∞, and the

boundary is at u = 0.
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The system of equations governing the solution is

x′′ = 0 , x = au , a = const > 0 ,

10y′′ − 8e8y(6e−2w − e−12w) + Φ′′ = 0 ,

10w′′ − 12e8y(e−2w − e−12w) − Φ′′ = 0 ,

Φ′′ + e−Φ+4z−4y−4w(f ′2 − e2Φ+8y+8wP 2) = 0 ,

4z′′ − (Q+ 2Pf)2e8z − e−Φ+4z−4y−4w(f ′2 + e2Φ+8y+8wP 2) = 0 ,

(e−Φ+4z−4y−4wf ′)′ − P (Q+ 2Pf)e8z = 0 .

(3.9)

The integration constants are subject to the zero-energy constraint T + V = 0, i.e.

y′2 − 2z′2 − 5w′2 − 1

8
Φ′2 − 1

4
e−Φ+4z−4y−4wf ′2

− e8y(6e−2w − e−12w) +
1

4
eΦ+4z+4y+4wP 2 +

1

8
e8z(Q+ 2Pf)2 = 3a2 .

(3.10)

Now we can evaluate the shear diffusion constant for the nonextremal KT solution.

Following (2.2), we find

DKT =e5y+3x−2z

∣

∣

∣

∣

horizon

∫ boundary

horizon

du e−8x

=e5y+3x−2z

∣

∣

∣

∣

horizon

∫ boundary

horizon

du e−8au

=
1

8a
e5y+3x−2z

∣

∣

∣

∣

horizon

.

(3.11)

The asymptotics of the solution to (3.9) at the horizon, u→ +∞, are [16]

z → −au + z∗ ,

y → −au + y∗ ,

x = au .

(3.12)

Thus (3.11) evaluates to

DKT =
1

8a
e5y∗−2z∗ . (3.13)

Since the black hole temperature is [16]

T =
2

π
ae2z∗−5y∗ , (3.14)

we indeed find

DKT =
1

4πT
. (3.15)
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3.3 MN gauge theory

The supergravity dual to N = 1 SU(N) supersymmetric Yang-Mills theory has been

proposed in [12]. The nonextremal deformation of the MN solution has been studied

in [17, 18]. In this section we follow [17]. The relevant near-extremal 10-d Einstein-

frame metric is

ds2

E =c1(r)
2
[

△2

1dX
2

0 + d~x 2
]

+ c1(r)
2a2

[

dr2

△2
2r

2
+
h(r)

4

(

dθ2

1 + sin2 θ1 dφ
2

1

)

+
1

4

(

dθ2

2 + sin2 θ2 dφ
2

2

)

+
1

4

(

dψ +

2
∑

i=1

cos θi dφi

)2 ]

,

(3.16)

One of the equations of motion is (eq. (5.55) of [17])

△′

1△2 =
A

c1(r)8h(r)r
, (3.17)

where (a constant) A is the nonextremality parameter. Now we can compute

DMN =a5hc81

∣

∣

∣

∣

horizon

∫ boundary

horizon

dr
△1

△2c
8
1hr

=a5hc81

∣

∣

∣

∣

horizon

∫ boundary

horizon

1

2Aa4
d
[

△2
1

]

=a5hc81

∣

∣

∣

∣

horizon

1

2Aa4
,

(3.18)

where in the second line in (3.18) we used (3.17), and in the last line we used the

boundary conditions △1|horizon = 0 and △1|boundary = 1.

From the near horizon behavior of the metric (eq. (5.61) of [17])

ds2
E ≈c1(rh)2

[

η2dX2
0 + d~x 2

]

+
c181 (rh)a

2h2(rh)

A2
dη2

+ c1(rh)
2a2

[

h(rh)

4

(

dθ2
1 + sin2 θ1 dφ

2
1

)

+
1

4

(

dθ2

2 + sin2 θ2 dφ
2

2

)

+
1

4

(

dψ +
2
∑

i=1

cos θi dφi

)2 ]

,

(3.19)

we find
1

T
= 2π

c81ah

A

∣

∣

∣

∣

horizon

. (3.20)
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Comparing (3.18) and (3.20) we find

DMN =
1

4πT
. (3.21)

Hence for at three non-trivial supergravity backgrounds we have found a common

result, that D = 1/4πT . In all cases, we have taken advantage of reducing the u

integral in (2.2) to a boundary term. This suggests that saturation of the KSS bound

is in fact universal, depending only on the thermal nature of the background spacetime.

We now examine this in detail.

3.4 General supergravity backgrounds

Our key observation is that before turning on any nonextremality, the Poincare sym-

metry of the background geometry guarantees that

Rtt +Rxx = 0 , (3.22)

where Rµν is the Ricci tensor in an orthonormal frame. Clearly, an analogous condition

must be satisfied for the full stress tensor of the matter supporting the geometry

Ttt + Txx = 0 . (3.23)

Because turning on the nonextremality will not modify (3.23), we see that (3.22) is

valid away from extremality as well. We now show that (3.22) is sufficient to explicitly

evaluate (2.2), yielding the result

DT =
1

4π
. (3.24)

Consider the following D = d+ p+ q dimensional background

ds2

D = Ω2

1(y) (gµν(x)dx
µdxν) + Ω2

2(y)
(

ĝ(z)αβdz
αdzβ + g̃(y)mndy

mdyn
)

, (3.25)

where gµν is d-dimensional, ĝαβ is p-dimensional and gmn is q-dimensional. An explicit

computation yields

Rµν = rµν − gµν

(

Ω−2

2 Ω1∇2Ω1 + (d− 1)Ω−2

2 (∇Ω1)
2 + (D − d− 2)Ω−3

2 Ω1∇Ω1∇Ω2

)

,

Rαβ = r̂αβ − ĝαβ

(

Ω−1

2 ∇2Ω2 + (D − d− 3)Ω−2

2 (∇Ω2)
2 + dΩ−1

2 Ω−1

1 ∇Ω1∇Ω2

)

,

(3.26)

9



where ∇ is with respect to gmn, and rµν , r̂αβ, r̃mn are Ricci tensors computed from

gµν , ĝαβ and g̃mn correspondingly.

To be relevant for the nonextremal RG flows of 4-d gauge theories, we now take

d = 1, p = 3 and D = 10. Also, we have rµν = r̂αβ = 0, and Ω1(r) = Ω2(r)△(r)

depends only on the radial coordinate of g̃mn. △(r) is the nonextremality warp factor

with the boundary conditions

△(r)

∣

∣

∣

∣

r=r0

= 0, △(r)

∣

∣

∣

∣

r=∞

= 1 , (3.27)

where we take the horizon to be at r = r0 and the boundary to be at r = ∞. Given

(3.26), the linear combination of Ricci components, (3.22), gives rise to

∇2△ + 8Ω−1
2 ∇Ω2∇△ = 0 . (3.28)

Assuming the radial dependence as above, we find the first integral of (3.28) to be

d△
dr

g̃−1/2
rr g̃

1/2
5 = AΩ−8

2 , (3.29)

where A is an integration constant, related to the temperature as we explain below.

Here we have decomposed the q = 6 dimensional metric g̃mn as follows

gmn(y)dy
mdyn = g̃rrdr

2 + g̃5 ijdy
idyj . (3.30)

It is easy to see now that the expression (2.2) reduces to

D =

√

−G(r)
√

−Gtt(r)Grr(r)

∣

∣

∣

∣

horizon

∫

∞

r0

△d△
A

=

√

−G(r)
√

−Gtt(r)Grr(r)

∣

∣

∣

∣

horizon

1

2A

=
1

2A
Ω8

2(r0)g̃
1/2
5 (r0) .

(3.31)

Furthermore, note that using (3.29) near the horizon yields

ds2

10 = − (dt)2 Ω2

2(r0)△2 + Ω2

2(r0) grr(r0)

(

d△
A

)2

g−1

rr (r0)g̃5(r0)Ω
16

2 (r0) , (3.32)

from which we can read off the temperature

T =
A

2πg̃5(r0)1/2Ω8
2(r0)

. (3.33)
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Combining (3.31) and (3.33), we the arrive at

D =
1

4πT
. (3.34)

This proves our claim that the KSS bound is always saturated in the supergravity dual,

at least to this leading order in corrections.

4 A comment on α′ corrections

The explicit examples in previous section, and the general theorem in section 3.4,

demonstrate that the KSS bound, (1.2), is saturated in all supergravity backgrounds

realizing holographic duals to gauge theories at large (strictly speaking infinite) ’t Hooft

coupling λ ≡ g2
YMN . On the other hand, as pointed out in [6], for typical matter (i.e.,

water under normal conditions) 4πDT ≫ 1. These two observations together make us

conjecture that

D =
f(λ)

4πT
, (4.1)

where f(λ) is (in principle) a computable function of the ’t Hooft coupling, such that

for arbitrary λ,

f(λ) ≥ 1 , (4.2)

and

f(λ) → 1+, λ→ ∞ . (4.3)

Since on the supergravity side of the gauge/string correspondence, ’t Hooft coupling

corrections translate into string theory α′-corrections, verification of the conjecture

(4.3) would involve the study of α′ corrections to the hydrodynamics. Realistically,

this can be done for the near-extremal D3-branes. In fact, using the KSS expression for

the diffusion coefficient, (2.2), applied to the α′-corrected metric of the near-extremal

D3-branes [19], we found that the bound (1.2) is violated

DT =
1

4π

(

1 − 15γ + O(γ2)

)

, (4.4)

where

γ =
1

8
ξ(3)α′3 . (4.5)

We would like to emphasize, however, that this result assumes that the dispersion

relation for the low-energy gravitational shear perturbations (which led to the diffusion
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coefficient expression (2.2)) is not modified by the α′ corrections. This assumption is

very likely incorrect, and one thus has to do complete analysis of the metric fluctuations

themselves. We hope to return to this problem in the future.
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